Kamis, 02 Juli 2009

ENZIM PADA TUMBUHAN

I. ENZIM PADA TUMBUHAN

  1. SEJARAH TENTANG ENZIM

Pada awalnya, enzim dikenal sebagai protein oleh Sumner ( 1926 ) yang telah berhasil mengisolasi urease dari tumbuhan kara pedang. Urease adalah enzimysng dapat menguraikan urea menjadi CO2 dan NH3. Beberapa tahun kemudian Northrop dan Kunits dapat mengisolasi pepsin, tripsin, dan kinotripsin. Kemudian makin banyak enzim yang telah dapat diisolasi dan telah dibuktikan bahwa enzim tersebut ialah protein.

Dari hasil penelitian para ahli biokim ternyata banyak enzim mempunyai gugus bukan protein, jadi termasuk golongan protein majemuk. Gugus bukan protein ini disebut dengan kofaktor ada yang terikat kuat pada protein dan ada pula yang tidak terikat kuat oleh protein.. Gugus terikat kuat pada bagian protein artinya sukar terurai dalam larutan yang disebut dengan Prostetik, sedang yang tidak begitu terikat kuat ( mudah dipisahkan secara dialisis ) disebut dengan Koenzim. Keduanya ini dapat memungkinkan enzim bekerja terhadap substrat.

  1. PENGERTIAN ENZIM

ü Enzim ialah suatu zat yang dapat mempercepat laju reaksi dan ikut beraksi didalamnya sedang pada saat akhir proses enzim akan melepaskan diri seolah – olah tidak ikut bereaksi dalam proses tersebut.

ü Enzim merupakan reaksi atau proses kimia yang berlangsung dengan baik dalam tubuh makhluk hidup karena adanya katalis yang mampu mempercepat reaksi. Koenzim mudah dipisahkan dengan proses dialisis.

ü Enzim berperan secara lebih spesifik dalam hal menentukan reaksi mana yang akan dipacu dibandingkan dengan katalisator anorganik sehingga ribuan reaksi dapat berlangsung dengan tidak menghasilkan produk sampingan yang beracun.

ü Enzim terdiri dari apoenzim dan gugus prostetik. Apoenzim adalah bagian enzim yang tersusun atas protein. Gugus prostetik adalah bagian enzim yang tidak tersusun atas protein. Gugus prostetik dapat dikelompokkan menjadi dua yaitu koenzim (tersusun dari bahan organik) dan kofaktor (tersusun dari bahan anorganik).

  1. PERBEDAAN ENZIN DENGAN KATALISATOR

ü Katalisator bersifat umum, hanya berfungsi untuk mempercepat reaksi yang dapat digunakan berulang - ulang ( satu katalisator mampu mereaksikan 2 atau 3 bahkan lebih reaksi)

ü Enzim bersifat lebih spesifik hanya digunakan untuk satu reaksi saja ( satu enzim hanya untuk satu reaksi)

  1. METABOLISME TUMBUHAN

Tumbuhan juga mengahasilkan senyawa metabolit sekunder yang berfungsi untuk melindungi tumbuhan dari serangan serangga, bakteri, jamur dan jenis patogen lainnya serta tumbuhan itu mampu menghasilkan vitamin untuk kepentingan tumbuhan itu sendiri serta hormon – hormon yang merupakan sarana bagi tumbuhan untuk berkomunikasi antara organnya atau jaringannya dalam mengendalikan dan mengkoordinasi pertumbuhan dan perkembangannya.

Dalam tumbuhan pun terdapat proses metabolisme tumbuhan yang terdiri dari anabolisme ( pembentkan senyawa yang lebih besar dari molekul – molekul yang lebih kecil, molekul ini terdiri dari pati, selulose, protein, lemak dan asam lemak. Prioses ini membutuhkan energi).Sedang katabolisme merupakan senyawa dengan molekul yang besar membentuk senyawa – senyawa dengan molekul yang lebih kecil dan menghasilkan energi.

Sel dalam tubuh tumbuhan mampu mengatur lintasan – lintasan metabolik yang dikendalikannnya agar terjadi dan dapat mengatur kecepatan reaksi tersebut dengan cara memproduksi suatu katalisator dalam jumlah yang sesuai dan tepat pada saat dibutuhkan. Katalisator inilah yang disebut denagn enzim yang mampu mempercepat laju reaksi yang berkisar antara 108 sampai 1020.

  1. SIFAT – SIFAT ENZIM

Sifat-sifat enzim adalah sebagai berikut:

1 Biokatalisator
Enzim mempercepat laju reaksi, tetapi tidak ikut bereaksi.

2 Termolabil
Enzim mudah rusak bila dipanaskan sampai dengan suhu tertentu.

3 Merupakan senyawa protein

4 Bekerja secara spesifik.Satu jenis enzim bekerja secara khusus hanya pada satu jenis substrat. Misalnya enzim katalase menguraikan Hidrogen peroksida (H2O2) menjadi air (H2O) dan oksigen (O2), sedangkan enzim lipase menguraikan lemak + air menjadi gliserol + asam lemak.

F. SUSUNAN ENZIM

Secara kimia, enzim yany lengkap (holoenzim) tersusun atas 2 bagian yaitu:

1. Bagian protein disebut Apoenzim yang bersifat labil ( mudah berubah) yang dipengaruhi oleh suhu dan keasaman.

2. Bagian yang bukan protein yang disebut dengan gugus prostetik ( gugusan aktif) yang berasal dari kofaktor.

G. KOMPOSISI KIMIA DAN STRUKTUR 3-DIMENSI ENZIM

Setiap enzim terbentuk dari molekul protein sebagai komponen utama penyusunnya dan bebrapa enzim hanya terbentuk dari molekul protein dengan tanpa adanya penambahan komponen lain. Protein lainnya seperti Sitokrom yang membawa elektron pada fotosintesis dan respirasi tidak pula dapat digolongkan sebagai enzim. Selain itu, protein yang terdapat dalam biji juga lebih berperan sebagai bahan cadangan untuk digunakan dalam proses perkecambahan biji.

Protein hanya terbentuk dari satu ikatan poloipeptida yang menggumpal membentuk suatu struktur yang bulat atau sperikal, contohnya ribonuklease. Setiap rantai polipeptida atau molekul protein secara sponstan akan membentuk konfigurasi dengan energi bebas terendah.

Dalam sitisol sel, asam amino lebih bersifat hidrofobik yang akan mengumpul pada bagian dalam, sedang pada permukaan molekul protein atau enzim asan amino bersifat hidrofilik.

H. KOMPERTEMENTASI ENZIM

Enzim – enzim yang berperan untuk fotosintesis terdapat pada kloroplas. Enzim yang berperan penting dalam respirasi aerobik terdapat pada mitokondria, sedang enzim respirasi lainnya terdapat dalam sitosol.

Kompertemenisasi enzi akan meningkat edisiensi banyak proses yang beralngsung di dalam sel, karena :

1. Reaktan tersedia pada tempat dimana enzim tersedia.

2. Senyawa akan dikonversi dikirim ke arah enzim yang berperan untuk menghasilakn produk sesuai yang dikehendaki dan tidak disimpangkan pada lintasan yang lain. Akan tetapi kompartemenisasi ini tidak bersifat absolut.

I. FUNGSI SPESIFIK, NOMENKLATUR dan PENGGOLONGAN ENZIM.

a. Fungsi Enzim

Yaitu sebagai katalis untuk proses biokimia yang terjadi dalam sel maupun di luar sel makhluk hidup. Enzim ini berfungsi sebagai katalis yang sangan efisien dan mempunyai derajat yang tinggi.

b. Tata nama dan Kekhasan Enzim

Setiap enzim disesuaikan dengan nama substratnya dengan menambahkan “ase” dibelakangnya.

Kekhasan enzim asam amino sebagai substrat dapat mengalami reaksi berbagai enzim.

c.Penggolongan Enzim

Enzim dapat digolongkan ke dalam 6 golongan yaitu :

1. Oksidoreduktase terdapat dua enzimyaitu dehidrogenase dan oksidasi

2. Transferase yaitu enzim yang bekerja sebagai katalis pada reaksi pemindahan suatu gugus dari suatu senyawa lain

3. Hidrolase yaitu sebagai katalis reaksi hidrolisis

4. Liase berperan dalam proses pemisahan

5. Isomerase bekerja pada reaksi intramolekuler

6. Ligase bekerja pada penggabungan dua molekul

Fotosintesis

Reaksi fotosintesis dirangkum sebagai berikut:

6CO2 + 12H2O + energy cahaya –> C6H12O6 + 6O2 + 6H2O

Oksigen yang dikeluarkan dari tumbuhan berasal dari air dan bukan CO2. Kloroplas menguraikan air menjadi hidrogen dan oksigen. Fotosintesis terdiri dari dua proses. Tahap tersebut adalah reaksi terang dan siklus Calvin.

Reaksi terang merupakan tahap fotosintesis yang mengubah energi matahari menjadi energi kimia. Kloroplas menyerap cahaya dan cahaya menggerakkan transfer elektron dan hidrogen ke penerima yaitu NADP+ (nikotinamida adenine dinukleotida fosfat). Pada proses ini, air terurai. Reaksi terang pada fotosintesis ini melepaskan O2. Pada reaksi terang, tenaga matahari mereduksi NADP+ menjadi NADPH dengan menambahkan sepasang electron bersama dengan nukleus hidrogen. Pada reaksi terang juga terjadi fosforilasi yang mengubah ADP menjadi ATP. Jadi energy cahaya diubah menjadi energi kimia dengan pembentukan NADPH: sumber dari elektron berenergi, dan ATP; energy sel yang serba guna.

Tahap kedua fotosintesis adalah siklus Calvin yang berawal dari pemasukan CO2 ke dalam molekul organik yang telah disiapkan di dalam kloroplas. Proses ini disebut fiksasi karbon. Siklus Calvin mereduksi karbon terfiksasi menjadi karbohidrat melalui penambahan elektron. Energi untuk mereduksi berasal dari NADPH. Siklus Calvin mengubah CO2 menjadi karbohidrat dengan menggunakan ATP hasil dari reaksi terang. Siklus Calvin disebut juga reaksi gelap atau reaksi tak bergantung cahaya karena tidak memerlukan cahaya secara langsung.

Pada fotosintesis, cahaya tampak diserap oleh pigmen. Pigmen yang berbeda menyerap panjang gelombang yang berbeda. Klorofil a bukanlah satu-satunya pigmen yang penting dalam kloroplas. Tetapi hanya klorofil a yang dapat berperan secara langsung dalam reaksi terang. Pigmen lain dalam membrane tilakoid dapat menyerap cahaya dan mentransfer energinya ke klorofil a. Salah satunya adalah klorofil b. Jika foton cahaya matahari diserap oleh klorofil b, energi kemudian disalurkan ke klorofil a yang beraksi seolah-olah klorofil inilah yang menyerap energi tersebut.

Dalam membran tilakoid, klorofil tersusun bersama protein dan molekul organik lainnya menjadi fotosistem. Fotosistem memiliki kompleks antena yang terdiri dari klorofil a, klorofil b dan karotenoid. Jumlah dan keragaman pigmen membuat fotosistem dapat menyerap spectrum yang lebih luas. Saat molekul antena menyerap foton, energi disalurkan ke klorofl a yang terletak pada pusat reaksi. Molekul yang bersama-sama menggunakan pusat reaksi dengan klorofil a adalah akseptor elektron primer.

Pada membran tilakoid terdapat fotosistem I dan fotosistem II. Fotosistem I memiliki pusat klorofil P700 karena pigmen ini paling baik menyerap cahaya yang memiliki panjang gelombang 700 nm. Pusat reaksi fotosistem II memiliki klorofil yang disebut P680 karena paling baik menyerap cahaya pada panjang gelombang 680 nm. Adanya protein yang berbeda menjadi penyebab adanya perbedaan sifat penyerapan cahaya.

Aliran Elektron non-siklik

Aliran elektron non-siklik dimulai ketika fotosistem II menyerap cahaya , dan electron yang dieksitasi ke tingkat yang lebih tinggi dalam P680 diterima oleh akseptor electron primer. Klorofil yang dioksidasi menjadi agen pengoksidasi yang sangat kuat. Elektron diekstraksi dari air dan dikirimkan ke P680 menggantikan elektron yang keluar dari klorofil. Air diuraikan menjadi hidrogen dan oksigen. Elektron yang terfotoeksitasi mengalir dari akseptor elektron primer ke fotosistem I melalui rantai transport elektron yang terdiri dari satu pembawa elektron yaitu plastokinon (Pq), suatu kompleks yang terdiri atas dua sitokrom , dan protein yang mengandung tembaga yang disebut plastosianin (Pc). Elektron yang menuruni rantai, eksergoniknya berada ke tingkat energi yang lebih rendah dan digunakan oleh tilakoid untuk menghasilkan ATP. Pmbentukan ATP disebut fosforilasi karena digerakkan oleh energi cahaya.

Elektron selanjutnya mencapai pusat P700 yang telah kehilangan elektronnya, karena energy cahaya menggerakkan electron dari P700 ke akseptor electron primer pada fotosistem I. Selanjutnya electron ditransfer melalui transfer electron . disalurkan ke feredoksin (Fd). NADP+ reduktase menyalurkan electron dari Fd ke NADP+. NADP+ berubah menjadi NADPH.

Aliran Elektron siklik

Elektron yang terfotoeksitasi dapat melalui jalur khusus yaitu aliran electron siklik. Aliran ini menggnakan fotosistem I saja. Elektron kembali dari feredoksin ke kompleks sitokrom dank e klorofil P700. NADPH tidak diproduksi tetapi menghasilkan ATP. Proses pembentukan ATP ini disebut fosforilasi siklik.

Siklus Calvin

Siklus Calvin dibagi menjadi tiga tahap yaitu :

  1. Fiksasi karbon. Molekul CO2 diikat pada ribulosa bifosfat (RuBP) dengan bantuan RuBP karboksilase atau Rubisco. Reaksi ini menghasilkan dua molekul 3-fosfogliserat.
  2. Reduksi. Tiap molekul 3-fosfogliserat menerima gugus fosfat baru dari ATP menghasilkan 1,3-difosfogliserat. Selanjutnya 1,3 difosfogliserat direduksi oleh sepasang electron dari NADPH menjadi gliseraldehid 3-fosfat (G3P). G3P merupakan gula. Setiap 3 molekul CO2 terdapat 6 molekul G3P, tetapi hanya 1 molekul G3P yang dihitung sebagai selisih perolehan karbohidrat. Satu molekul keluar siklus dan digunakan oleh tumbuhan, sedangkan 5 molekul didaur ulang untuk menghasilkan 3 molekul RuBP.
  3. Regenerasi akseptor CO2. Lima molekul G3P disusun ulang dalam langkah terakhir siklus Calvin menjadi 3 molekul RuBP yang siap menerima CO2 kembali.

Tumbuhan C4

Tumbuhan C4 memfiksasi karbon dengan membentuk senyawa berkarbon empat sebagai produknya. Tergolong tumbuhan C4 yang penting dalam pertanian adalah tebu, jagung, dan famili rumput. Dalam tumbuhan C4 terdapat dua jenis sel fotosintetik : sel seludang-berkas pembuluh dan sel mesofil. Sel seludang berkas pembuluh tersusun menjadi kemasan yang padat di sekitar berkas pembuluh. Di antara seludang-berkas pembuluh dan epidermis daun terdapat sel mesofil. Siklus Calvin terbatas pada kloroplas seludang-berkas pembuluh. Siklus ini didahului oleh masuknya CO2 ke dalam senyawa organik dalam mesofil.

Tahap pertama adalah penambahan CO2 pada fosfoenolpiruvat (PEP) untuk membentuk oksaloasetat (memiliki empar karbon). Enzim karboksilase menambahkan CO2 pada PEP. Setelah memfiksasi CO2, sel mesofil mengirim keluar produk berkarbon empat ke sel seludang-berkas pembuluh melalui plasmodesmata. Dalam seludang-berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang ke dalam materi organik oleh rubisko dan siklus Calvin.

Sel mesofil tumbuhan C4 memompa CO2 ke dalam seludang-berkas pembuluh, mempertahankan konsentrasi CO2 dalam seludang-berkas pembuluh cukup tinggi agar rubisko dapat menerima CO2 bukan O2. Fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula.

Tumbuhan CAM

Tumbuhan lain seperti tumbuhan sukulen (penyimpan air), kaktus, nenas dan beberapa family lain memiliki adaptasi fotosintesis yang lain. Tumbuhan ini membuka stomata pada malam hari dan menutup pada siang hari. Stomata yang menutup pada siang hari membuat tumbuhan menghemat air tetapi mencegah masuknya CO2. Saat stomata terbuka pada malam hari, tumbuhan mengambil CO2 dan memasukkannya ke berbagai asam organic. Metabolism ini disebut crassulacean acid metabolism (CAM). Sel mesofil tumbuhan CAM menyimpan asam organic yang dibuatnya selama malam hari di dalam vakuola hingga pagi hari. Pada siang hari saat reaksi terang menyediakan ATP dan NADPH untuk siklus Calvin, CO2 dilepas dari asam organik yang dibuat pada malam hari itu sebelum dimasukkan ke dalam gula dalam kloroplas.

Download Slide Fotosintesis (PPT)

Pustaka :

Campbell, N.A., Reece, J.B., Mitchell, L.G. 2002. Biologi. Alih bahasa lestari, R. et al. safitri, A., Simarmata, L., Hardani, H.W. (eds). Erlangga, Jakarta.

Moore, R., Clark, W.D., Vodopich, D.S. 1998. Botany. McGraw-Hill Companies. USA

RESPIRASI
Oleh: Subhan Pradana

Respirasi adalah suatu proses pengambilan O2 untuk memecah senyawa-senyawa organik menjadi CO2, H2O dan energi. Namun demikian respirasi pada hakikatnya adalah reaksi redoks, dimana substrat dioksidasi menjadi CO2 sedangkan O2 yang diserap sebagai oksidator mengalami reduksi menjadi H2O. Yang disebut substrat respirasi adalah setiap senyawa organik yang dioksidasikan dalam respirasi, atau senyawa-senyawa yang terdapat dalam sel tumbuhan yang secara relatif banyak jumlahnya dan biasanya direspirasikan menjadi CO2 dan air. Sedangkan metabolit respirasi adalah intermediat-intermediat yang terbentuk dalam reaksi-reaksi respirasi.
Karbohidrat merupakan substrat respirasi utama yang terdapat dalam sel tumbuhan tinggi. Terdapat beberapa substrat respirasi yang penting lainnya diantaranya adalah beberapa jenis gula seperti glukosa, fruktosa, dan sukrosa; pati; asam organik; dan protein (digunakan pada keadaan & spesies tertentu).
Secara umum, respirasi karbohidrat dapat dituliskan sebagai berikut:
C6H12O6 + O2 6CO2 + H2O + energi
Reaksi di atas merupakan persamaan rangkuman dari reaksi-reaksi yang terjadi dalam proses respirasi. Reaksi tersebut terlihat sangat sederhana, terlihat seakan respirasi merupakan reaksi tunggal, sehingga mungkin dapat agak menyesatkan karena respirasi yang sebenarnya bukanlah reaksi tunggal. Respirasi merupakan rangkaian dari banyak reaksi komponen, yang masing-masingnya dikatalisis oleh enzim yang berbeda.
Respirasi dapat digolongkan menjadi dua jenis berdasarkan ketersediaan O2 di udara, yaitu respirasi aerob dan respirasi anaerob. Respirasi aerob merupakan proses respirasi yang membutuhkan O2, sebaliknya respirasi anaerob merupakan proses repirasi yang berlangsung tanpa membutuhkan O2. Respirasi anaerob sering disebut juga dengan nama fermentasi. Perbedaan antara keduanya akan terlihat pada proses tahapan reaksi dalam respirasi.
Respirasi banyak memberikan manfaat bagi tumbuhan. Manfaat tersebut terlihat dalam proses respirasi dimana terjadi proses pemecahan senyawa organik, dari proses pemecahan tersebut maka dihasilkanlah senyawa-senyawa antara yang penting sebagai ”Building Block”. Building Block merupakan senyawa-senyawa yang penting sebagai pembentuk tubuh. Senyawa-senyawa tersebut meliputi asam amino untuk protein; nukleotida untuk asam nukleat; dan prazat karbon untuk pigmen profirin (seperti klorofil dan sitokrom), lemak, sterol, karotenoid, pigmen flavonoid seperti antosianin, dan senyawa aromatik tertentu lainnya, seperti lignin.
Telah diketahui bahwa hasil akhir dari respirasi adalah CO2 dan H2O, hal ini terjadi bila substrat secara sempurna dioksidasi, namun bila berbagai senyawa di atas terbentuk, substrat awal respirasi tidak keseluruhannya diubah menjadi CO2 dan H2O. Hanya beberapa substrat respirasi yang dioksidasi seluruhnya menjadi CO2 dan H2O, sedangkan sisanya digunakan dalam proses anabolik, terutama di dalam sel yang sedang tumbuh. Sedangkan energi yang ditangkap dari proses oksidasi sempurna beberapa senyawa dalam proses respirasi dapat digunakan untuk mensintesis molekul lain yang dibutuhkan untuk pertumbuhan.
Laju respirasi dapat dipengaruhi oleh beberapa faktor antara lain:
Ketersediaan substrat. Tersedianya substrat pada tanaman merupakan hal yang penting dalam melakukan respirasi. Tumbuhan dengan kandungan substrat yang rendah akan melakukan respirasi dengan laju yang rendah pula. Demikian sebliknya bila substrat yang tersedia cukup banyak maka laju respirasi akan meningkat.
Ketersediaan Oksigen. Ketersediaan oksigen akan mempengaruhi laju respirasi, namun besarnya pengaruh tersebut berbeda bagi masing-masing spesies dan bahkan berbeda antara organ pada tumbuhan yang sama. Fluktuasi normal kandungan oksigen di udara tidak banyak mempengaruhi laju respirasi, karena jumlah oksigen yang dibutuhkan tumbuhan untuk berrespirasi jauh lebih rendah dari oksigen yang tersedia di udara.
Suhu. Pengaruh faktor suhu bagi laju respirasi tumbuhan sangat terkait dengan faktor Q10, dimana umumnya laju reaksi respirasi akan meningkat untuk setiap kenaikan suhu sebesar 10oC, namun hal ini tergantung pada masing-masing spesies.
Tipe dan umur tumbuhan. Masing-masing spesies tumbuhan memiliki perbedaan metabolsme, dengan demikian kebutuhan tumbuhan untuk berespirasi akan berbeda pada masing-masing spesies. Tumbuhan muda menunjukkan laju respirasi yang lebih tinggi dibanding tumbuhan yang tua. Demikian pula pada organ tumbuhan yang sedang dalam masa pertumbuhan.
Proses r1espirasi diawali dengan adanya penangkapan O2 dari lingkungan. Proses transport gas-gas dalam tumbuhan secara keseluruhan berlangsung secara difusi. Oksigen yang digunakan dalam respirasi masuk ke dalam setiap sel tumbuhan dengan jalan difusi melalui ruang antar sel, dinding sel, sitoplasma dan membran sel. Demikian juga halnya dengan CO2 yang dihasilkan respirasi akan berdifusi ke luar sel dan masuk ke dalam ruang antar sel. Hal ini karena membran plasma dan protoplasma sel tumbuhan sangat permeabel bagi kedua gas tersebut.
Setelah mengambil O2 dari udara, O2 kemudian digunakan dalam proses respirasi dengan beberapa tahapan, diantaranya yaitu glikolisis, dekarboksilasi oksidatif, siklus asam sitrat, dan transpor elektron. Tahapan yang pertama adalah glikolisis, yaitu tahapan pengubahan glukosa menjadi dua molekul asam piruvat (beratom C3), peristiwa ini berlangsung di sitosol. As. Piruvat yang dihasilkan selanjutnya akan diproses dalam tahap dekarboksilasi oksidatif. Selain itu glikolisis juga menghasilkan 2 molekul ATP sebagai energi, dan 2 molekul NADH yang akan digunakan dalam tahap transport elektron.
Dalam keadaan anaerob, As. Piruvat hasil glikoisis akan diubah menjadi karbondioksida dan etil alkohol. Proses pengubahan ini dikatalisis oleh enzim dalam sitoplasma. Dalam respirasi anaerob jumlah ATP yang dihasilkan hanya dua molekul untuk setiap satu molekul glukosa, hasil ini berbeda jauh dengan ATP yang dihasilkan dari hasil keseluruhan respirasi aerob yaitu 36 ATP.
Tahapan kedua dari respirasi adalah dekarboksilasi oksidatif, yaitu pengubahan asam piruvat (beratom C3) menjadi Asetil KoA (beratom C2) dengan melepaskan CO2, peristiwa ini berlangsung di sitosol. Asetil KoA yang dihasilkan akan diproses dalam siklus asam sitrat. Hasil lainnya yaitu NADH yang akan digunakan dalam transpor elektron.
Tahapan selanjutnya adalah siklus asam sitrat (daur krebs) yang terjadi di dalam matriks dan membran dalam mitokondria, yaitu tahapan pengolahan asetil KoA dengan senyawa asam sitrat sebagai senyawa yang pertama kali terbentuk. Beberapa senyawa dihasilkan dalam tahapan ini, diantaranya adalah satu molekul ATP sebagai energi, satu molekul FADH dan tiga molekul NADH yang akan digunakan dalam transfer elektron, serta dua molekul CO2.
Tahapan terakhir adalah transfer elektron, yaitu serangkaian reaksi yang melibatkan sistem karier elektron (pembawa elektron). Proses ini terjadi di dalam membran dalam mitokondria. Dalam reaksi ini elektron ditransfer dalam serangkaian reaksi redoks dan dibantu oleh enzim sitokrom, quinon, piridoksin, dan flavoprotein. Reaksi transfer elektron ini nantinya akan menghasilkan H2O.

ENERGI DAN PRODUKSI PERTANIAN

Pertanian pada dasamya berhubungan dengan perubahan energi matahari ke dalam bentuk bahan pangan maupun serat.

Penggunaan energi untuk kegiatan tanaman

Energi matahari merupakan sumber utama hubungannnya dengan pertumbuhan tanaman, sembilan puluh persen bahan kering tanaman pertanian berasal dari perubahan carbon melalui proses fotosintesis yang tergantung cahaya.

Belakangan ini banyak ahli biologi yang mencoba menghitung produktivitas tanaman dengan memperhatikan penangkapan energi matahari dan pengubahannya ke energi kimia melalui proses fotosintesis.

Bahan dan hasil akhir proses fotosintesis ditulis sebagai berikut:

(energi cahaya 673.000 kalori + klorofil)

6 CO2 + 12 H2O C6H12O6 + 6 O2 + 6 H2O

Energi cahaya matahari yang digunakan berasal dari panjang gelombang 0,4 - 0,7 mikron.

Efisiensi fotosintesis dipengaruhi oleh laju fotosintesis.

Laju fotosintesis akan meningkat dengan meningkatnya cahaya sampai batas-batas tertentu, walaupun laju fotosintesis meningkat dengan meningkatnya intensitas cahaya, tetapi peningkatannya lambat sehingga efisiensi penangkapan cahaya menurun. Apabila intensitas cahaya tinggi secara relatif lebih banyak cahaya tegak yang dipantulkan oleh daun-daun. Masuknya cahaya ke tajuk tanaman dipengaruhi oleh sudut datangnya sinar dan susunan daun, tajuk yang ideal untuk distribusi cahaya mempunyai susunan daun merata, pada bagian atas tajuk mempunyai daun-daun lebih tegak dan lebih kecil sedang daun-daun bawah tersusun secara horizontal.

Konsep aliran energi dalam pertanian

Dengan menganggap tanaman sebagai alat penangkap, perubah dan penyimpan energi, maka timbul usaha menaikkan efisiensi dan produktivitas tanaman.

Didaerah yang padat tanaman, beberapa faktor lingkungan segera menjadi berkurang, cahaya, kelembaban tanah dan unsur hara. Hal ini merupakan faktor pembatas dalam pertanian, pemupukan merupakan salah satu cara yang baik untuk meningkatkan produksi.

Efisiensi pertanian dapat diperoleh dengan pcrbaikan tanaman melalui pemuliaan tanaman.

Salah satu usaha untuk memperluas alat penangkap energi dengan memperpanjang musim tanam misalnya menggunakan rumah kaca untuk tanaman yang memungkinkan input teknologi dan modal besar seperti tanaman hortikultura di daerah iklim sedang.

Usaha mempengaruhi laju fotosintesis dengan cara pertukaran CO2 antara dedaunan dan atmosfer di sekitarnya. Di wilayah yang sebelumnya angin kurang diperhatikan, hasil jagung dapat ditingkatkan bila barisan tanaman diarahkan tegak lurus arah angin, sehingga pucuk tanaman tertiup angin dan terjadi perputaran dan pencampuran udara.

1 komentar:

  1. anda ini ngawur? ngak ada bahasan tentang enzim tumbuhan sama sekali -_-

    BalasHapus